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SUMMARY 

Finite element models, optimized for running on conventional serial computers, are not suitable to make 
use of the potentional high performance of today’s vector or parallel computers. Also, automatic vectorization 
by the compiler or manual vectorization at the local level do not by far lead to the required and expected 
computational speed. 

A global change of the overall program logic or a complete redesign becomes necessary, i.e. a completely 
new generation of program systems has to be created, considering the new hardware characteristics and 
abilities. 

A new computer-independent programming technique for finite element problems to be implemented 
on vector computers is proposed and the test results of scalar and vectorized program structures on a 
conventional serial and on a non-conventional pipeline computer are discussed. 
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INTRODUCTION 

In the past two decades the finite element method has found increasingly widespread application 
in nearly all areas of engineering and science. The ability to approximate complex geometries 
efficiently, the easy incorporation of all types .of boundary conditions and the very convenient 
handling of arbitrary tensorial quantities made it the preferred choice in solving fluid mechanics 
and transport problems. 

In order to implement a numerical algorithm on any computer its adaption to the computer’s 
characteristics is necessary. The actual structure of most finite element programs is determined 
by the architecture of the third computer generation, based on the von Neumann principle 
(SISD, single instruction stream and single data stream). 

Owing to high complexity, especially when considering time-dependent, non-linear and 
three-dimensional problems, in many cases an implementation on these computers is not possible 
or is economically infeasible. Even talking into account future advances in semiconductor design, 
machines of this architecture will not be able to achieve the computational speed necessary to 
solve computationally massive problems in engineering and science. Vector computers, based 
on new hardware architectures, are the great hope to make use of these advanced models in 
practice. Bench-marks of conventional finite element program systems on SIMD (single 
instruction and multi data stream) computers, however, proved to be in some way disillusioning. 

In the present paper a new computer-independent programming technique for finite element 
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problems to be implemented on vector computers is proposed. The test results of vectorized 
and scalar program structures on a conventional serial (CDC Cyber 175) and a non-conventional 
pipeline computer (CDC Cyber 205) are discussed. 

SOFTWARE PARTICULARITIES OF VECTOR COMPUTERS 

Pipeline or vector computers realize the principle of a single instruction and multi data stream 
(SIMD). On these computers, when the same operation is to be performed on a series of operands, 
a vector machine instruction can perform the operation faster than a series of scalar (conventional) 
machine instructions. The steps of a scalar machine instruction cannot be overlapped and the 
operation is to be performed only on a single set of values. The conceptual idea behind a vector 
or pipeline machine instruction is essentially that of an assembly line: if the same arithmetic 
operation is going to be repeated many times, throughput can be greatly increased by dividing 
the operation into a sequence of subtasks and maintaining the flow of operand pairs in various 
states of completion. The more sets of operands are to be processed the more efficient is the 
vector instruction. 

A series of values that are stored in contiguous memory locations and which serves as an 
operand for a vector machine instruction is called vector. A vector is completely defined by its 
first element, which must be an array element, its length and data type. The vectorizing compiler 
recognizes vectorizable loop constructions and generates the respective vector code.2 

The speed of computation can also be increased, making use of the vector intrinsic functions 
with vector input/output arguments. The vector intrinsic functions are not standardized, but 
are implemented on any pipeline computer with similar names. 

Important for the vectorization of the finite element structures are the GATHER and 
SCATTER intrinsic functions. By means of a GATHER function (Figure l), 

R ( m )  (la) 

all m elements of vector B are gathered from the n elements of vector x, according to 
the pointer vector R, containing the respective indices of elements of A: 

m 

Figure 1 .  GATHER function (equation ( 1 ) )  
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Figure 2. SCATTER function (equation (2)) 

B(i) = A(K(i ) ) ,  with K(i )  < n; i = 1,. . . , rn. 

Using a SCATTER function (Figure 2), 
K ( m )  

B(”) = S $m), 

all rn elements of vector A are scattered to vector B of length n, according to the pointer 
vector K, containing the respective indices of elements of B: 

- D  
B(K(i))  = A(i), with K(i )  d n; i = 1,. . . , m. (2b) 

Bit-vectors, whose elements are 1 or 0, are used as logical arguments in vector relational 
expressions. If the right hand side expression of 

(34  T i T i T ( m )  = (P) 2 B ( m ) )  i = I ,  . . . , rn 
is true, IBIT(i) is set to 1 ,  otherwise to 0. The bit-vector may be used later, for example 

to store the vector elements B(i) or C(i) into the element i of A, depending on the content of 
IBIT(i). If the element i of contains a ‘l’, B(i) is assigned to the coefficient i of A, 
otherwise C(i). 

A detailed presentation of the FORTRAN software features of vector computers can be found 
in the specific  manual^.^.^ 

TESTED FINITE ELEMENT MODEL 

The finite element algorithm of a two-dimensional ground-water model was chosen to test 
conventional and vectorized programming techniques. 

Following the Dupuit-Forchheimer assumptions for large ground-water basins, the two- 
dimensional horizontal time-dependent ground-water flow is governed by 
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where h is the unknown piezometric head. S and T represent the specific storativity and the 
transmissivity of the aquifer, and Q is a time-dependent sink or source term. 

Boundary conditions are of Dirichlet (prescribed head) or Neumann (prescribed flux) type. 
The non-linearity, rising from the dependence of the transmissivity on the actual piezometric 

head, can be considered by an iteration algorithm, i.e. within the iteration step the linearized 
equation 

( 5 )  

will be solved. 

leads to a linear equation system of the form 
The finite element approach, based on a variational principle or weighted residual technique, 

ah 
D,,h, + Em," at = F,, 

where 
r 

and the right hand side vector F ,  represents the boundary fluxes and sink/source terms. 

and the equations for all elements e are gathered to form the global equation system. 

offers a solution of satisfactory accuracy by minimal computing 

4 are the element basis functions. The integration is performed over the element's area A" 

The numerical model uses for discretization the linear triangular element, which in this case 

The integration with respect to time is performed as usual by a finite difference scheme. 
Solving the system of linear algebraic equations yields the vector of the unknown nodal values 

of the piezometric head. To obtain the nodal flux balances and the flow velocities, the piezometric 
head vector is resubstituted into equation (6) and differentiated, respectively. 

CONVENTIONAL PROGRAM STRUCTURE 

The analysis process of the test model consists mainly of three phases to be carried out for every 
time step: 

(i) calculation of the element matrices and assemblage of the structure matrix 
(ii) solution of the equilibrium equations 

(iii) calculation of nodal balances and derivatives. 

In practice, limits of the available storage capacity and speed of a particular computer constrain 
one to specific implementations of any of the three phases, with a significant effect on the 
efficiency of the other phases. Currently, implementations of the first and third phases are based 
on two approaches. 

The element matrices or the derivative matrices are generated and stored on a peripheral 
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storage device for later use, or the derivative matrices and element matrices are regenerated, 
when required. Common to both approaches is the sequential computation of the element 
mat rice^.^^* 

The reasons for the weak performance of conventional programs on vector computers are 
obvious. As Figure 3 shows, in a long loop for all elements the element matrices are sequentially 
computed and stored in the general structure matrix. The inner tasks of the loop require many 
algebraic operations on vectors of short length, preventing the pipeline processor from developing 
its full potential. 

Owing to the start-up time necessary to begin every vector operation, for short vectors the 
vectorized computation may take even longer than the equivalent row of scalar operations.' 

The same problem occurs in the third phase, when computing the nodal balances by 
resubstitution of the solution vector into the equation system and when evaluating the derivatives 
such as velocities and fluxes. 

The implementation of the second phase consists essentially of solving directly or iteratively 
a system of linear algebraic equations. Currently solution techniques, used in many conventional 

I 4 LOOP ON ELEMENTS 

I GENERATION OF THE B MATRIX I 

+ 
GENERATION OF THE ELEMENT 

MATRIX 

STORE ELEMENT MATRIX IN THE 

GENERAL STRUCTURE MATRIX 

END LOOP ON ELEMENTS 

I 
Figure 3. Sequential computing of the element matrices and assemblage of the general structure matrix 
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programs, are basically applications of Gaussian elimination.’ The chosen algorithm has not 
only to be quick and stable, but to suit to the specific computer features as well. 

An effective storage scheme for the symmetric and banded global matrix is to store the 
coefficients below the skyline of the non-zero elements only. When solving the equations, no 
coefficients outside the skyline are stored or processed. Considering a vectorized solution of the 
simultaneous equations, this procedure of addressing coefficients is not well suited, because 
non-vectorizable index computations are needed. 

I t  can be seen that the finite element programs in their actual form cannot take advantage of 
the capabilities of the vector computers. A complete redesign becomes necessary. 

VECTOR PROGRAM STRUCTURE 

The basic idea ofeffective vector programming for the finite element method is to take advantage of 
the large data arrays that must be handled in the form of vectors and arrays. 

First of all the user-convenient scalar input has to be rearranged in compact vectors that are 
basic data for the vector machine instructions. 

Figure 4 demonstrates the basic procedure. Values such as co-ordinates, evaluated for all n 
nodes of the finite element mesh are gathered to element node vectors of length rn. In this process 
the system topology vectors ( fT, ,  fT2,  K3, in Figure 5), connecting element number and associated 
node numbers, were used as pointzr or filter vectors. The element node vectors of the co-ordinates 
can easily be used to perform a completely vectorized precalculation of the derivative matrices B 
and the areas of all elements. 

I 

COMPUTATION OF AREA OF ALL rn ELEMENTS 
-(ml 4 m l  *(ml - tml -(m) (t ;ml *(ml *(ml ~ $ml -9ml 
A = 0 . 5 * ( X ,  + ( Y 2  -Y, 1 - X 2  - Y 3  ) + X ,  -y ,  1) 

COMPUTATION OF B-MATRIX OF ALL rn ELEMENTS 
i5(m) -(ml - *lml 

1 = ( Y 2  Y3 1 3( .0 .5/zm1 

3:’ =(?TI - TI) 3(. 0.5 /2m1 
Y m l  = ( y ; m )  *(ml 63 - Y, 1 80 .5 /%(m1 

-hl -(ml 4 m l  6, =(%:I- X 2  ) 3(.0.5/A 

-9m) -(ml - t m l  6, = i X ,  - X, 1 * 0 . 5 / 2 m 1  

8m1 =(nr’ - *(ml X, 1 + ~ 0 . 5 / % ( ~ ]  
6 

Figure 4. Vectorized computation of the B matrices 
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n, 

Figure 5. Generation of the topology vectors 

A similar procedure is used when converting nodal values to element mean values, as shown in 
Figure 6 for the bedrock and caprock elevations. 

The usual technique of defining certain material types and using a pointer vector, indicating the 
material type of each element, is very convenient in the sense of minimizing the manual input and 
the storage requirements, but will prevent later an effective vectorization, when computing the 
element matrices. By means of a gather instruction, element vectors of permeability and storativity 
are built, making use of the material type pointer vector (Figure 7). A vectorized preparation of the 
storativity for later use in the storativity matrix may also take place here. 

The classical procedure of stiffness matrix computation and assemblage, sequentially carried out 
on the elements, has to be split up into subtasks of operations, which can be computed vectorized 
for all elements simultaneously. Figure 8 shows a completely vectorized computation of the 
element matrices. 

In order to permit the vector processor to develop its full potential, sequential schemes, as shown 
in Figure 3, have to be converted to a new form. To obtain long vectors, the inner and outer loops 
are interchanged. By means of this technique the outer non-vectorizable loops are of minor length, 
whereas all inner loops, and by this all algebraic computations, act on long vectors of length m. 

Gathering the actual nodal values of piezometric head to element values and applying the bit- 
vector technique of logical decisions, a vectorized computation of all elements' transmissivities 
takes place. The transmissivity vector and the precalculated derivative matrices are used to 
compute the element matrices by means of vector instructions. The storage matrices are computed 
in a similar way. Right hand side contributions and element matrices are scattered to the global 
matrix and right hand side vector, again using the mesh topology vectors as pointer or filter 
vectors. 
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GATHERING BEDROCK VECTOR OF ALL m ELEMENTS 

FiiP) = 0.0 
FOR ALL ELEMENT NODES : J = 1,3 

p) 
j 

-(m) = K ( m ) +  4 z(n) HU 

GATHERING CAPROCK VECTOR OF ALL m ELEMENTS - 
H O  = 0 . 0  

FOR ALL ELEMENT NODES : J = 1 , 3  
Yrnl K: 

Figure 6. Rearrangement of the nodal bedrock and caprock elevations into vectors of length rn 

GATHERING PERMEABILITY VECTOR OF ALL m ELEMENTS 

M T Y P ( ~ )  
, p n )  = 4 rF(nmtyp1 

GATHERING STORAGE VECTORS OF ALL m ELEMENTS 

__t 

M T Y P ( ~ )  

Zrn) = 4 ?nrntyp) (unconfined) 

Figure 7. Rearrangement of the material characteristics data input into vectors of length rn 
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Figure 8. Vectorized computation of the element matrices and introduction into the general structure matrix 
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There is a lot of literature about vectorization of linear equation solvers available.'O~'' As it 
looks now, some kind of a renaissance of iterative approaches could take place, since they are easy 
vectorizable to a high degree. In the non-linear and time-dependent case they are especially 
effective, and the solution of the previous iteration provides reasonable approximations for the 
solution of the next step. 

TEST RESULTS 

Figures 9-1 1 show the results of the bench-marks in the form of speed-up factors, comparing the 
CPU time of the global vectorized program running on the Cyber 205 with the sequential program 
implemented on the Cyber 175 and Cyber 205, respectively, as a function of the spatial 
discretization. 

Figure 9. Speed 
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Figure 10. Speed-up [actors: scalar (SC.) and global vectorized (G.V.) system equation solver 
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Figure 11. Speed-up factors: scalar (SC.) and global vectorized (G.V.) computation of the nodal balances and derivatives 

First of all the results show again that scalar programs, developed and optimized for running on 
conventional serial computers, are not suitable to make use of the potentionally high performance 
of today’s supercomputers. The minor speed-up is caused by the conventional hardware advance, 
only. 

The speed-up of the Cyber 205 against the Cyber 175 (which has been for a comparatively long 
time one of the fastest computers available for the solution of scientific and engineering problems), 
is of special interest, when exploring the possibilities of the fourth generation vector computers in 
contrast to yesterday’s supercomputers. But nevertheless this comparison includes also the results 
of conventional hardware progress, such as the shorter cycle times of the vector computer . 

The results of the new parallel or vectorized hardware architecture in connection with new 
programming techniques, considering the new hardware characteristics become evident when 
comparing the CPU times of a scalar sequential program, vectorized at the local level by the 
compiler with the global vectorized program running on the same computer, showing remarkable 
speed-ups for all computationally massive parts of a finite element model. 

CONCLUSION AND OUTLOOK 

General theoretical considerations and results of extensive bench-marks show that transporting 
finite element models, developed and optimized to run on conventional sequential computers, to 
fourth generation supercomputers does not by far lead to the required speed-up. to solve future 
computationally massive problems. The conventional program structures are not ~ _ _  suited to -~ make 

~~ 
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use of the potentionally great performance of today's supercomputers, and in extreme they may run 
even slower than when not vectorized at all. 

A global change of the overall program logic, which means more or less a complete redesign, 
becomes necessary, considering the new hardware characteristics. 

The global vectorization cannot be achieved by applying the FORTRAN 77 standard only. At 
least a minimum of additional intrinsic vector functions have to be used. Up to now, every 
manufacturer has supplied his own set of vector instructions, which prevents the portability of 
programs and the scientific exchange of experience and programs. Since the different vector 
instruction sets carry out basicaly the same vector operations, users should insist on establishing a 
vector language standard as soon as possible. 

Vectorized programming needs more main memory, since on the one hand the definition of 
additional vectors and storage schemes become necessary and on the other hand slow 
input/output operations on background storage would not be in coincidence with extremely fast 
vector operations. 

With a new generation of programs, developed and optimized to run on fourth generation 
vector computers, taking maximum advantage from the new advanced hardware architecture of 
vectorized or parallel processing, considerable speed-ups of more than an order of magnitude can 
be achieved and the numerical solution of new problem dimensions come into the reach of 
scientists and engineers. 
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NOTATION 

vector of element area 
vector of piezometric head 
vector of piezometric head of previous time step 
vector of effective aquifer thickness 
vector of caprock elevation 
vector of bedrock elevation 
vector of element node number 
vector of permeability 
vector of material type 
vector of right hand side 
vector of storativity (unconfined) 
vector of effective storativity 
vector of storativity (confined) 
vector of transmissivity 
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