
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 6, 91 3-925 (1986)

FINITE ELEMENT GROUND-WATER MODELS
IMPLEMENTED ON VECTOR COMPUTERS

W. PELKA AND A. PETERS

Institute for Hydraulic Engineering and Water Resources Development, Aachen University of Technology (R W T H) ,
D- 5100 Aachen, West Germany

SUMMARY

Finite element models, optimized for running on conventional serial computers, are not suitable to make
use of the potentional high performance of today’s vector or parallel computers. Also, automatic vectorization
by the compiler or manual vectorization at the local level do not by far lead to the required and expected
computational speed.

A global change of the overall program logic or a complete redesign becomes necessary, i.e. a completely
new generation of program systems has to be created, considering the new hardware characteristics and
abilities.

A new computer-independent programming technique for finite element problems to be implemented
on vector computers is proposed and the test results of scalar and vectorized program structures on a
conventional serial and on a non-conventional pipeline computer are discussed.

KEY WORDS Finite Elements Ground-water Models Vector Computers

INTRODUCTION

In the past two decades the finite element method has found increasingly widespread application
in nearly all areas of engineering and science. The ability to approximate complex geometries
efficiently, the easy incorporation of all types .of boundary conditions and the very convenient
handling of arbitrary tensorial quantities made it the preferred choice in solving fluid mechanics
and transport problems.

In order to implement a numerical algorithm on any computer its adaption to the computer’s
characteristics is necessary. The actual structure of most finite element programs is determined
by the architecture of the third computer generation, based on the von Neumann principle
(SISD, single instruction stream and single data stream).

Owing to high complexity, especially when considering time-dependent, non-linear and
three-dimensional problems, in many cases an implementation on these computers is not possible
or is economically infeasible. Even talking into account future advances in semiconductor design,
machines of this architecture will not be able to achieve the computational speed necessary to
solve computationally massive problems in engineering and science. Vector computers, based
on new hardware architectures, are the great hope to make use of these advanced models in
practice. Bench-marks of conventional finite element program systems on SIMD (single
instruction and multi data stream) computers, however, proved to be in some way disillusioning.

In the present paper a new computer-independent programming technique for finite element

0271-2091/86/120913-13$06.50
0 1986 by John Wiley & Sons, Ltd.

Received 18 January 1986
Revised 9 May 1986

914 W. PELKA A N D A. PETERS

problems to be implemented on vector computers is proposed. The test results of vectorized
and scalar program structures on a conventional serial (CDC Cyber 175) and a non-conventional
pipeline computer (CDC Cyber 205) are discussed.

SOFTWARE PARTICULARITIES OF VECTOR COMPUTERS

Pipeline or vector computers realize the principle of a single instruction and multi data stream
(SIMD). On these computers, when the same operation is to be performed on a series of operands,
a vector machine instruction can perform the operation faster than a series of scalar (conventional)
machine instructions. The steps of a scalar machine instruction cannot be overlapped and the
operation is to be performed only on a single set of values. The conceptual idea behind a vector
or pipeline machine instruction is essentially that of an assembly line: if the same arithmetic
operation is going to be repeated many times, throughput can be greatly increased by dividing
the operation into a sequence of subtasks and maintaining the flow of operand pairs in various
states of completion. The more sets of operands are to be processed the more efficient is the
vector instruction.

A series of values that are stored in contiguous memory locations and which serves as an
operand for a vector machine instruction is called vector. A vector is completely defined by its
first element, which must be an array element, its length and data type. The vectorizing compiler
recognizes vectorizable loop constructions and generates the respective vector code.2

The speed of computation can also be increased, making use of the vector intrinsic functions
with vector input/output arguments. The vector intrinsic functions are not standardized, but
are implemented on any pipeline computer with similar names.

Important for the vectorization of the finite element structures are the GATHER and
SCATTER intrinsic functions. By means of a GATHER function (Figure l),

R (m) (la)

all m elements of vector B are gathered from the n elements of vector x, according to
the pointer vector R, containing the respective indices of elements of A:

m

Figure 1 . GATHER function (equation (1))

GROUND-WATER MODELS ON VECTOR COMPUTERS 915

F
I

nl

1

Figure 2. SCATTER function (equation (2))

B(i) = A(K(i)) , with K(i) < n; i = 1,. . . , rn.

Using a SCATTER function (Figure 2),
K (m)

B(”) = S $m),

all rn elements of vector A are scattered to vector B of length n, according to the pointer
vector K, containing the respective indices of elements of B:

- D
B(K(i)) = A(i), with K(i) d n; i = 1,. . . , m. (2b)

Bit-vectors, whose elements are 1 or 0, are used as logical arguments in vector relational
expressions. If the right hand side expression of

(34 T i T i T (m) = (P) 2 B (m)) i = I , . . . , rn
is true, IBIT(i) is set to 1 , otherwise to 0. The bit-vector may be used later, for example

to store the vector elements B(i) or C(i) into the element i of A, depending on the content of
IBIT(i). If the element i of contains a ‘l’, B(i) is assigned to the coefficient i of A,
otherwise C(i).

A detailed presentation of the FORTRAN software features of vector computers can be found
in the specific manual^.^.^

TESTED FINITE ELEMENT MODEL

The finite element algorithm of a two-dimensional ground-water model was chosen to test
conventional and vectorized programming techniques.

Following the Dupuit-Forchheimer assumptions for large ground-water basins, the two-
dimensional horizontal time-dependent ground-water flow is governed by

916 W. PELKA A N D A. PETERS

where h is the unknown piezometric head. S and T represent the specific storativity and the
transmissivity of the aquifer, and Q is a time-dependent sink or source term.

Boundary conditions are of Dirichlet (prescribed head) or Neumann (prescribed flux) type.
The non-linearity, rising from the dependence of the transmissivity on the actual piezometric

head, can be considered by an iteration algorithm, i.e. within the iteration step the linearized
equation

(5)

will be solved.

leads to a linear equation system of the form
The finite element approach, based on a variational principle or weighted residual technique,

ah
D,,h, + Em," at = F,,

where
r

and the right hand side vector F , represents the boundary fluxes and sink/source terms.

and the equations for all elements e are gathered to form the global equation system.

offers a solution of satisfactory accuracy by minimal computing

4 are the element basis functions. The integration is performed over the element's area A"

The numerical model uses for discretization the linear triangular element, which in this case

The integration with respect to time is performed as usual by a finite difference scheme.
Solving the system of linear algebraic equations yields the vector of the unknown nodal values

of the piezometric head. To obtain the nodal flux balances and the flow velocities, the piezometric
head vector is resubstituted into equation (6) and differentiated, respectively.

CONVENTIONAL PROGRAM STRUCTURE

The analysis process of the test model consists mainly of three phases to be carried out for every
time step:

(i) calculation of the element matrices and assemblage of the structure matrix
(ii) solution of the equilibrium equations

(iii) calculation of nodal balances and derivatives.

In practice, limits of the available storage capacity and speed of a particular computer constrain
one to specific implementations of any of the three phases, with a significant effect on the
efficiency of the other phases. Currently, implementations of the first and third phases are based
on two approaches.

The element matrices or the derivative matrices are generated and stored on a peripheral

GROUND-WATER MODELS ON VECTOR COMPUTERS 917

storage device for later use, or the derivative matrices and element matrices are regenerated,
when required. Common to both approaches is the sequential computation of the element
mat rice^.^^*

The reasons for the weak performance of conventional programs on vector computers are
obvious. As Figure 3 shows, in a long loop for all elements the element matrices are sequentially
computed and stored in the general structure matrix. The inner tasks of the loop require many
algebraic operations on vectors of short length, preventing the pipeline processor from developing
its full potential.

Owing to the start-up time necessary to begin every vector operation, for short vectors the
vectorized computation may take even longer than the equivalent row of scalar operations.'

The same problem occurs in the third phase, when computing the nodal balances by
resubstitution of the solution vector into the equation system and when evaluating the derivatives
such as velocities and fluxes.

The implementation of the second phase consists essentially of solving directly or iteratively
a system of linear algebraic equations. Currently solution techniques, used in many conventional

I 4 LOOP ON ELEMENTS

I GENERATION OF THE B MATRIX I

+
GENERATION OF THE ELEMENT

MATRIX

STORE ELEMENT MATRIX IN THE

GENERAL STRUCTURE MATRIX

END LOOP ON ELEMENTS

I
Figure 3. Sequential computing of the element matrices and assemblage of the general structure matrix

918 W. PELKA A N D A. PETERS

programs, are basically applications of Gaussian elimination.’ The chosen algorithm has not
only to be quick and stable, but to suit to the specific computer features as well.

An effective storage scheme for the symmetric and banded global matrix is to store the
coefficients below the skyline of the non-zero elements only. When solving the equations, no
coefficients outside the skyline are stored or processed. Considering a vectorized solution of the
simultaneous equations, this procedure of addressing coefficients is not well suited, because
non-vectorizable index computations are needed.

I t can be seen that the finite element programs in their actual form cannot take advantage of
the capabilities of the vector computers. A complete redesign becomes necessary.

VECTOR PROGRAM STRUCTURE

The basic idea ofeffective vector programming for the finite element method is to take advantage of
the large data arrays that must be handled in the form of vectors and arrays.

First of all the user-convenient scalar input has to be rearranged in compact vectors that are
basic data for the vector machine instructions.

Figure 4 demonstrates the basic procedure. Values such as co-ordinates, evaluated for all n
nodes of the finite element mesh are gathered to element node vectors of length rn. In this process
the system topology vectors (fT, , fT2, K3, in Figure 5), connecting element number and associated
node numbers, were used as pointzr or filter vectors. The element node vectors of the co-ordinates
can easily be used to perform a completely vectorized precalculation of the derivative matrices B
and the areas of all elements.

I

COMPUTATION OF AREA OF ALL rn ELEMENTS
-(ml 4 m l *(ml - tml -(m) (t ;ml *(ml *(ml ~ $ml -9ml
A = 0 . 5 * (X , + (Y 2 -Y, 1 - X 2 - Y 3) + X , -y , 1)

COMPUTATION OF B-MATRIX OF ALL rn ELEMENTS
i5(m) -(ml - *lml

1 = (Y 2 Y3 1 3(.0 .5/zm1

3:’ =(?TI - TI) 3(. 0.5 /2m1
Y m l = (y ; m) *(ml 63 - Y, 1 80 .5 /%(m1

-hl -(ml 4 m l 6, =(%:I- X 2) 3(.0.5/A

-9m) -(ml - t m l 6, = i X , - X, 1 * 0 . 5 / 2 m 1

8m1 =(nr’ - *(ml X, 1 + ~ 0 . 5 / % (~]
6

Figure 4. Vectorized computation of the B matrices

GROUND-WATER MODELS ON VECTOR COMPUTERS 919

n,

Figure 5. Generation of the topology vectors

A similar procedure is used when converting nodal values to element mean values, as shown in
Figure 6 for the bedrock and caprock elevations.

The usual technique of defining certain material types and using a pointer vector, indicating the
material type of each element, is very convenient in the sense of minimizing the manual input and
the storage requirements, but will prevent later an effective vectorization, when computing the
element matrices. By means of a gather instruction, element vectors of permeability and storativity
are built, making use of the material type pointer vector (Figure 7). A vectorized preparation of the
storativity for later use in the storativity matrix may also take place here.

The classical procedure of stiffness matrix computation and assemblage, sequentially carried out
on the elements, has to be split up into subtasks of operations, which can be computed vectorized
for all elements simultaneously. Figure 8 shows a completely vectorized computation of the
element matrices.

In order to permit the vector processor to develop its full potential, sequential schemes, as shown
in Figure 3, have to be converted to a new form. To obtain long vectors, the inner and outer loops
are interchanged. By means of this technique the outer non-vectorizable loops are of minor length,
whereas all inner loops, and by this all algebraic computations, act on long vectors of length m.

Gathering the actual nodal values of piezometric head to element values and applying the bit-
vector technique of logical decisions, a vectorized computation of all elements' transmissivities
takes place. The transmissivity vector and the precalculated derivative matrices are used to
compute the element matrices by means of vector instructions. The storage matrices are computed
in a similar way. Right hand side contributions and element matrices are scattered to the global
matrix and right hand side vector, again using the mesh topology vectors as pointer or filter
vectors.

920 W. PELKA AND A. PETERS

GATHERING BEDROCK VECTOR OF ALL m ELEMENTS

FiiP) = 0.0
FOR ALL ELEMENT NODES : J = 1,3

p)
j

-(m) = K (m) + 4 z(n) HU

GATHERING CAPROCK VECTOR OF ALL m ELEMENTS -
H O = 0 . 0

FOR ALL ELEMENT NODES : J = 1 , 3
Yrnl K:

Figure 6. Rearrangement of the nodal bedrock and caprock elevations into vectors of length rn

GATHERING PERMEABILITY VECTOR OF ALL m ELEMENTS

M T Y P (~)
, p n) = 4 rF(nmtyp1

GATHERING STORAGE VECTORS OF ALL m ELEMENTS

__t

M T Y P (~)

Zrn) = 4 ?nrntyp) (unconfined)

Figure 7. Rearrangement of the material characteristics data input into vectors of length rn

GROUND-WATER MODELS ON VECTOR COMPUTERS 92 1

Figure 8. Vectorized computation of the element matrices and introduction into the general structure matrix

922 W. P E L K A A N D A. P E T E R S

There is a lot of literature about vectorization of linear equation solvers available.'O~'' As it
looks now, some kind of a renaissance of iterative approaches could take place, since they are easy
vectorizable to a high degree. In the non-linear and time-dependent case they are especially
effective, and the solution of the previous iteration provides reasonable approximations for the
solution of the next step.

TEST RESULTS

Figures 9-1 1 show the results of the bench-marks in the form of speed-up factors, comparing the
CPU time of the global vectorized program running on the Cyber 205 with the sequential program
implemented on the Cyber 175 and Cyber 205, respectively, as a function of the spatial
discretization.

Figure 9. Speed

LT
70

u
Q: v 60

I
a 7 50
d ; LO
Q cn

30

20

10

0
101 lo2 10'

NUMBER OF NODES

-up factors: scalar (SC.) and global vectorized (G.V.) computation of the element matrices
of the structure matrix

and assemblage

cc
70

0

$ 6 0
Q
? 50
0
W
w LO
Q cn
30

20

10

0

a

lo' 1 o2 lo'
NUMBER OF NODES

Figure 10. Speed-up [actors: scalar (SC.) and global vectorized (G.V.) system equation solver

GROUND-WATER MODELS ON VECTOR COMPUTERS 923

[L 150

2 2 ILO

7
8 I20

U

d. 130

W
L

110

100

90

80

70

60

50

LO

30

20

10

0
lo’ lo2 10’

NUMBER OF NODES

Figure 11. Speed-up factors: scalar (SC.) and global vectorized (G.V.) computation of the nodal balances and derivatives

First of all the results show again that scalar programs, developed and optimized for running on
conventional serial computers, are not suitable to make use of the potentionally high performance
of today’s supercomputers. The minor speed-up is caused by the conventional hardware advance,
only.

The speed-up of the Cyber 205 against the Cyber 175 (which has been for a comparatively long
time one of the fastest computers available for the solution of scientific and engineering problems),
is of special interest, when exploring the possibilities of the fourth generation vector computers in
contrast to yesterday’s supercomputers. But nevertheless this comparison includes also the results
of conventional hardware progress, such as the shorter cycle times of the vector computer .

The results of the new parallel or vectorized hardware architecture in connection with new
programming techniques, considering the new hardware characteristics become evident when
comparing the CPU times of a scalar sequential program, vectorized at the local level by the
compiler with the global vectorized program running on the same computer, showing remarkable
speed-ups for all computationally massive parts of a finite element model.

CONCLUSION AND OUTLOOK

General theoretical considerations and results of extensive bench-marks show that transporting
finite element models, developed and optimized to run on conventional sequential computers, to
fourth generation supercomputers does not by far lead to the required speed-up. to solve future
computationally massive problems. The conventional program structures are not ~ _ _ suited to -~ make

~~

924 W. PELKA AND A. PETERS

use of the potentionally great performance of today's supercomputers, and in extreme they may run
even slower than when not vectorized at all.

A global change of the overall program logic, which means more or less a complete redesign,
becomes necessary, considering the new hardware characteristics.

The global vectorization cannot be achieved by applying the FORTRAN 77 standard only. At
least a minimum of additional intrinsic vector functions have to be used. Up to now, every
manufacturer has supplied his own set of vector instructions, which prevents the portability of
programs and the scientific exchange of experience and programs. Since the different vector
instruction sets carry out basicaly the same vector operations, users should insist on establishing a
vector language standard as soon as possible.

Vectorized programming needs more main memory, since on the one hand the definition of
additional vectors and storage schemes become necessary and on the other hand slow
input/output operations on background storage would not be in coincidence with extremely fast
vector operations.

With a new generation of programs, developed and optimized to run on fourth generation
vector computers, taking maximum advantage from the new advanced hardware architecture of
vectorized or parallel processing, considerable speed-ups of more than an order of magnitude can
be achieved and the numerical solution of new problem dimensions come into the reach of
scientists and engineers.

ANNOUNCEMENTS

Funding for this study was provided by the German Research Foundation (DFG) under
Ro 365/27. The authors wish to thank the Computer Centres of the University of Technology
Aachen and the University of Bochum for the continuous co-operation and support.

NOTATION

vector of element area
vector of piezometric head
vector of piezometric head of previous time step
vector of effective aquifer thickness
vector of caprock elevation
vector of bedrock elevation
vector of element node number
vector of permeability
vector of material type
vector of right hand side
vector of storativity (unconfined)
vector of effective storativity
vector of storativity (confined)
vector of transmissivity

REFERENCES

1. W. Pelka, A. Peters and M. Vogt, 'Erste Erfahrungen rnit dern Einsatz von GroeDtrechnern fur rnathernatisch-
numerische Grundwassermodelle, 6'. Bochumer Kolloquiitm iiber GroeDtrechner und Anwendungen, Bochurn, 1984.

2. R. Mares and R. Wojcieszynski. 'Vectorisieren in CYBER ?OO-Fortran', Bochumer Schrifieri x r Pt~rtdlelen
Dtrreni.t,rcohrir~rni/ 3. Rechenzentrum der Ruhr-Universitaet Bochurn. 1983.

GROUND-WATER MODELS ON VECTOR COMPUTERS 925

3. CDC. Forrrtrn 200 Version I Rcfi.rer7c.e Manuul 60480200 Rec. C, Rechenzentrum Ruhr-Universitaet Bochum, 1984.
4. CRAY Research, Inc., CRAY X - M P und CRAY-I Computer Systems. Library R&rence Manual SR 0014, 1984.
5. A. J. Bakcr, Finite Elemcwt Conzpufarionul Fluid Mechanics, McCrow Hill Book Comapny, 1983.
6. D. Withum, ‘Elektronische Berechnung ebener und raeumlicher Sicker-und Grundwasserstroemungen durch beliebig

berandete inhomogene anisotrope Medibn’, Mitteilungen des Instituts fuer Wasserwirtschaji und Landwirtschajilichen
Wasserbau der Technische Hochschule Hannover, Heft 10, 1976.

7. K. H. Huebner, The Finite Element Method for Engineers, Wiley, New York, 1975.
8. 0. C. Zienkiwicz, The Finite Element Method in Engineering Science, 2nd edn, McGraw Hill, London, 1971.
9. K. J. Bathe and E. L. Wilson, Numerical Methods in Finite Element Analysis, Prentice-Hall, 1976.

10. P. Concus, G. H. Golub and D. P. OLeary, ‘A generalized conjugate gradient method for the numerical solution of
elliptical partial differential equations’, Sparse Matrix Computations, Academic Press, 1976.

11. U. Schendel, EinJuehrung in die parallele Numerik, R. Oldenbourg Verlag, Muenchen Wien, 1981.

